NUCLEAR ENGINEERING GRADUATE STUDENT ORIENTATION

Fall 2023

August 15, 2023

Nuclear Engineering

Overview

- Welcome to Nuclear Engineering
- Introductions
- Faculty and Staff
- Support Services on Campus
- Policies, Procedures and Deadlines
- Graduate Manual
- Choosing an advisor (and committee)
- Making a plan of study
- Registration
- Student Organizations for Nuclear Engineering

Nuclear Engineering

Welcome to Nuclear Engineering at Purdue University

https://engineering.purdue.edu/NE

363 N. Grant Street, Lambertus 5281 West Lafayette, IN 47907 Phone: (765) 494-5739 ne@purdue.edu

Student Services Office:

363 N Grant Street, Lambertus 5281 Phone: (765) 494-5749 nuclss@purdue.edu

Nuclear Engineering

Graduate Program

Dr. Seungjin Kim Capt. James F. McCarthy, Jr. and Cheryl E. McCarthy Head and Professor

Dr. Lefteri Tsoukalas Interim Graduate Program Chair Professor

Nuclear Engineering Staff

Kellie Reece Executive Assistant to the Department Head kreece@purdue.edu 765-494-5741

Teresa Luse
Associate Administrative
Assistant
Travel and Purchasing
tluse@purdue.edu
765-494-5739

Academic Program Administrator nuclss@purdue.edu 765-494-5749

Nuclear Engineering Staff

Jessica Johnson john1690@purdue.edu Marketing & Communications Specialist 765-496-2133

Brin Reed NE Business Manager nuclbo@purdue.edu 765-494-5405 Account Assistant nuclbopurdue.edu 765-494-2583

NUCLEAR ENGINEERING OVERVIEW

- To provide an opportunity to learn about our faculty research
- A total of 15 Faculty
 - √ 9 Full Professors (2 Distinguished Professors)
 - √ 3 Associate Professors
 - √ 3 Assistant Professors
- 1 Research Faculty, 11 Adjunct/Courtesy Faculty and 4 Emeritus Faculty.
- A total of 168 students as of Fall 2022 (62 Grad Students) 100% of graduate students have financial support

Fellowship 17%

TA 6%

RA 67%

NUCLEAR ENGINEERING RESEARCH AREAS

- ✓ Instrumentation & control
- ✓ Nuclear Materials
- ✓ Radiation detection & measurement
- ✓ Reactor Physics
- ✓ Thermal-hydraulics
- ✓ Thermonuclear Fusion
- ✓ Verification / Uncertainty Quantification

- ✓ Cyber Security
- ✓ Food / Agricultural / Industry Applications.
- ✓ Fuel Cell / Hydrogen Prod.
- Nuclear Biomedical / Nuclear Medicine
- ✓ Nuclear non-proliferation.
- ✓ Nuclear Security
- ✓ Plasma Material Interactions

FACULTY AND RESEARCH

Dr. Hany Abdel-Khalik Professor

Research Interests

- Computational Reactor Physics
- Reduced Order Modeling and Complexity Reduction
- Uncertainty Quantification and Sensitivity Analysis
- Data Assimilation and Model Calibration

Dr. Hitesh BindraAssociate Professor

- Nuclear Reactor Safety
- Thermal-Fluid Science
- Statistical learning and Multiscale Safety for Advanced Reactors
- Thermal Energy Storage
- Micro-Reactor Applications

Dr. Stylianos Chatzidakis

Assistant Professor, Associate Reactor Director and Director of Nuclear Engineering Radiation Laboratory

Research Interests

- Computational radiation imaging and cosmic ray muon tomography
- Embedded sensors and nuclear sensing
- Quantum key distribution
- Instrumentation and control
- Spent nuclear fuel storage, transportation, and disposal
- Scientific machine learning, convolutional neural networks,

Dr. Chan Choi Professor

Research Interests

- Thermonuclear Fusion Plasma Engineering
- Compact Tori Plasma / Reactor Studies
- Inertial Confinement Fusion Beam Target Stability
- Fusion Space Propulsion
- Direct Energy Conversion
- Nuclear Nonproliferation Enabling Capabilities

School of Nuclear Engineering

Dr. Allen Garner **Professor Undergraduate Program Chair**

Research Interests

- Biomedical Applications of Pulsed Power and **Plasmas**
- Plasma Physics
- Pulsed Power
- High Power Microwaves
- Theoretical Biophysics

Dr. Ahmed Hassanein **Paul L. Wattelet Distinguished Professor**

Research Interests

- Plasma Material Interactions
- Magnetic and Inertial Fusion Research
- Computational Physics and **Hydrodynamics**
- Extreme Ultraviolet Lithography
- Laser and Discharge Produced Plasma
- Radiation and Particle Transport in Materials
- **Biomedical Engineering Applications**

School of Nuclear Engineering

Dr. Mamoru Ishii Walter Zinn Distinguished Professor

Research Interests

- Two-phased Flow Experiments and Modeling Research
- 3-D Two-fluid Model and Interfacial Area Transport Equation Development
- Advanced Light Water Reactor Safety Code Development
- LWR and LMFBR Safety Analysis
- Severe Accident Analysis

Dr. Seungjin Kim Capt. James F. McCarthy, Jr. and Cheryl E. McCarthy Head Professor

- Experimental Two-Phase Flow
- Thermal Hydraulics and Reactor Safety
- •Multiphase Instrumentation

Dr. Martin Lopez-De-Bertodano Associate Professor

Research Interests

- Experimental Two-Phase Flow
- Computational Fluid Dynamics
- Turbulence
- Thermal Hydraulics and Reactor Safety
- Nuclear Systems Simulation

Dr. Xiaoyuan Lou Associate Professor

- Advanced manufacturing for nuclear
- · Structural alloys and composites
- Material degradation in extreme environments
- Irradiation effects of materials
- Mechanical behavior of materials
- Data analytics and machine learning

Dr. Shripad Revankar Professor, Graduate Program Chair

Research Interests

- Two-Phase Flow and Heat Transfer
- Advance Reactor Design and Testing
- Reactor Safety and Thermal Hydraulics
- Severe Accident Analysis
- Nuclear Hydrogen Generation
- Fuel Cell, Hydrogen Systems, Renewable Energy

School of Nuclear Engineering

Dr. Rusi Taleyarkhan *Professor*

- Nano-to-Macro Scale Applications of Nuclear Science
- · Nuclear Reactor Thermal-Hydraulics
- Acoustic Inertial Confinement Fusion Materials and Radiation Dosimetry
- Metastable Fluid
- Radiation Interactions with Matter and Surface Modifications
- Materials Synthesis and Transmutation
- Controlled Hydrogen Production

Dr. Lefteri Tsoukalas Professor, Interim Graduate Program Chair

Research Interests

- Neurofuzzy Methodologies for Complex Power Systems Modeling, Diagnostics and Control.
- Intelligent Instrumentation Systems and Sensors
- Man-Machine Interface
- Autonomous Systems and Robotics

Dr. Yi Xie Assistant Professor

- Corrosion in extreme environment
- Advanced nuclear fuel
- Sensor and sensor material
- Advanced sintering technology
- Geological repositories of radioactive waste

Dr. Yunlin Xu **Assistant Professor**

- Reactor Physics
- Nuclear Reactor Design
- Advanced Nuclear Fuel Cells
- Homeland Security

Hany Abdel-Khalik - Professor

- Artificial Intelligence and Pattern Recognition Techniques for Supporting Safe, Economic, and Secure Operation of Digitally-controlled Systems/Processes
- Topics of Interest: Condition Monitoring, Cybersecurity, Model Validation
 Inference, VV&UQ, Reduced Order Modeling, Breaking AI,
 Outsourcing AI Data, Additive Manufacturing
 - DOE-NEUP: Al for Additive Manufacturing Applications
 - LANL: Active Fingerprinting for Safeguards Technology
 - IAEA: Al Opportunities & Challenges of Al Nuclear Applications
 - ORNL: Confidence Measures for Criticality Safety Applications
 - INL: Model Validation for First-of-A-Kind Systems
 - INL: Condition Monitoring for Nuclear Power Plants
 - INL: Development of Cyber Toolkit for Industrial Control Systems
 - NSF: Cybersecurity Covert Cognizance Technology ICORP Cohort

Hitesh Bindra - Associate Professor

Nuclear Energy Systems Transport (Nu-EST) Laboratory

Stylianos Chatzidakis - Assistant Professor

Radiation Imaging and Nuclear Sensing (RADIaNS)

One sided X-ray backscatter imaging **Deep Conv Neural Nets & Physics-Guided ML**

control & remote operation of microreactors

Chan Choi - Professor

- Slowing-down of fast charged-particle fusion-products for ITER tokamak burning plasma applications
- High-density, high-temperature ICF target hydrodynamic response stability analyses
- Compact tori reactor studies for power production and mission-to-Mars fusion space propulsion applications
- Muon tomography for spent-fuel dry casks imaging and reduction of spent-nuclear-fuels w/ hybrid tandem mirror
- Nuclear Security through CNEC

Allen L. Garner - Professor

BioElectrics and ElectroPhysics (BEEP) Lab

High Power Electrophysics

- Breakdown deviates from well established theories at microscale due to field emission
 - ✓ Derive universal breakdown models to predict DC and AC gas breakdown.
 - ✓ Experiments to quantify the impact of nanostructures on breakdown.
- Derivation of theories unifying multiple electron emission mechanisms.
- Theoretical assessment of crossed-field devices for defense and radiation.
- Development of novel compact, compositebased nonlinear transmission lines to generate pulsed RF radiation.

Application of nexus theory to assess transitions in electron emission mechanisms: CL (Child-Langmuir), MG (Mott-Gurney), FN (Fowler-Nordheim), and FD (Fowler-Dubridge). OL (Ohm's law) is the resistive limit.

Bioelectrics

- Apply electromagnetic radiation to modify cell membranes for cancer treatment, treat wounds, eradicate microorganisms, and reduce pain.
- Model electromagnetic interactions with cells and tissues.

Collaborating with

- ✓ GE on wound healing
- Nanovis on sterilization and wound healing.
- ✓ Luna Innovation on pin remediation.
- ✓ U.S. Army on pulsed RF bioeffects.

Electric pulses rapidly stimulate bone formation in osteoblasts (red)

Ahmed Hassanein - Paul L. Wattelet Distinguished Professor

Combining State-of- the Art Modeling & Experiments at Purdue

High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS)

<u>Center for Materials Under Extreme Environment (CMUXE)</u>

- Nuclear Fusion
- Nanolithography
- National Security
- Numerical Methods
- Biomedical

Mamoru Ishii - Walter H. Zinn Distinguished Professor

- Research in 3-D Two-phase Flow Modeling
- Research in Subcooled Boiling and CHF
- Two-fluid Model and Interfacial Area Transport
- 3-D Multigroup Two-phase Flow CFD Code
- Local Two-phase Flow and Boiling Instrumentation
- Integral Tests for LWR (PUMA, Natural Circulation BWR, Integrated PWR)
- Annular Flow Droplet, Entrainment and Film Dynamics
- Seismic Effects on Boiling Flow
- Small Modular BWR Design Development
- Al Use for Two-phase Flow Diagnostics
- Nuclear Reactor Security and Protection

Seungjin Kim - McCarthy Head and Professor

- Fundamentals of Two-Phase Flow Transport
 - ✓ Geometric Effects: Elbows, Spacer Grids, U-bend
 - ✓ Orientation Effects: Horizontal, Inclined, Vertical Upward & Downward Flows
- Advanced Two-Phase Flow Instrumentation
- Artificial Intelligence Applications

- Nuclear Reactor Safety and Analysis
 - ✓ Separate-effects \Experiments on Versatile Test Reactor (VTR)
 - ✓ Jet Impingement Model Evaluation/Development
- Computational Model Evaluation Development
 - √ VTR CFD Design Tool
 - ✓ Nuclear Reactor System Analysis Codes

Martin Lopez-De-Bertodano - Associate Professor

- Two-Fluid Model (TFM) STABILITY
 - ✓ More physics instead of "fixes"
 - ✓ Bubbly and stratified-wavy flows
 - ✓ Linear stability: well-posed
 - ✓ Nonlinear stability : Lyapunov
 - ✓ Achieve *Verification* (convergence)

TFM CFD

- Bubbly flows in ducts
- Two-phase turbulence modeling
- ✓ RANS and URANS simulations

Xiaoyun Lou - Associate Professor

Advanced Manufacturing

- Metal additive manufacturing
- Powder metallurgy-hot isostatic pressing
- Multi-material manufacturing
- Innovative manufacturing
 - Reactive additive manufacturing

Grain boundary engineering

Structural Materials

- Radiation and corrosion resistant steels
- Oxide dispersion alloys
- Weld metals
- Compositionally complex alloys
- Refractory alloys
- Nano composites

Material Behavior in Extreme Environments

- · Environmental assisted cracking
- Irradiated assisted stress corrosion cracking
- High temperature creep and creepfatigue
- Radiation damage

Innovative Testing and Characterization

- High-throughput alloy exploration
 - Gradient specimen synthesis and testing
 - Machine learning
- Mesoscale or microscale material testing and characterization

Shripad Revankar - Professor

Multiphase Flow and Fuel Cell Research Laboratory

Reactor Thermal Hydraulics and Safety

Scaling, Integral and Separate Effects Tests, Fuels, Severe Accident Experiments, CFD, and System Analysis Code

Multi-phase Flow

Two-Phase Instrumentation, Porous Media Multiphase, Microgravity Multiphase

Betavoltaic Cells

Tritium Loading on films, Betavoltaic Testing and Characterization

Hydrogen, Fuel Cell, Hybrid Energy

Nuclear Thermochemical Hydrogen Generation, Chemical Hydrogen Storage, Fuel Cells, Regenerative Systems, Hybrid Power Sources, Solar Thermal Energy Storage, PCMs

Valeryi Sizyuk - Research Associate Professor

- The effects of using axial magnetic field in extreme ultraviolet photon sources for nanolithography
 - ✓ To study the angular distribution of extreme ultraviolet (EUV) photon output in plasmas produced in tin planar targets by a Nd:YAG laser
- Radiation energy recycling for enhancement of extreme ultraviolet photor sources in LPPs
 - ✓ To study recycling of both laser and resulting plasma-generated radiation and possible gains in conversion efficiency and/or power reduction over regular LPP devices when using droplets of tin targe
- Heat loads to diverter nearby components from secondary radiation evolved during plasma instabilities
 - Simulation of Tokamak events in entire SOL using real reactor design

Effect of Disruption on SS Tube Structures

Rusi Taleyarkhan - Professor

- Radiation sensor systems for special nuclear material monitoring, dosimetry, safe-guards/security environmental remediation, and nuclear energy applications.
- Green (VOC free) radiation-thermal tailored polymers for coatings/adhesives in auto, engineering composite woods-materials construction industries and radiation dosimetry.
- Nuclear reactor thermal-hydraulics and safety.
- Energetic materials, vapor explosion sciences for nuclear-non nuclear industries, super-cooling.
- Controlled hydrogen production; Nuclear material transmutation and synthesis.
- Metastable fluid sciences and radiation interactions for fundamental physics.
- Radiation interactions with matter and surface property tailoring.
- Acoustic inertial confinement thermonuclear fusion.

Lefteri H. Tsoukalas - Professor

In collaboration with ANL, AISL pursues:

- Validation of point sensors in advanced reactors using long shortterm memory networks
- Temporal and spatial validation of fiber optics distributed sensors using long short-term memory networks

- Physics-informed networks for the solution of stiff point PKEs for development of SMR digital twins
- Generative adversarial networks for generation of augmented data for thermocouple sensors time series

 Signal attenuation study in simulated microwave wireless channel using SeQUeNCe

Yi Xie - Assistant Professor

Materials Innovation for Nuclear Energy (MINE)

Advanced Manufacturing Technology Development

- Ultrafast heating
- High-throughput manufacturing
- Tunable microstructure and property
- Energy saving
- Cost effective

Environmental Degradation

- In-situ corrosion characterization
- Electrochemical corrosion technique
- Molten salt corrosion
- Light water reactor corrosion
- Sodium reactor corrosion

Solid Oxide Cells Smart Manufacturing and Industrialization

 $H_2 + O_2 \stackrel{\text{SOFC}}{\leftarrow} H_2O + electricity(\Delta G) + heat(T\Delta S)$

Advanced Nuclear Fuels Development

- Accident tolerant fuels
- Metal fuels
- Accident tolerant control rods
- Characterization
- Performance investigation
- Design and development

Yunlin Xu - Assistant Professor

- Nuclear Reactor Core Simulation Code Development
 - Maintenance of US NRC Code license code PARCS
 - Develop simulation capability for new types of reactors such as SFR.
 - PARCS hybrid Macro-Micro depletion
 - Adaptive time step control for transient simulation
- Coupled Neutronics/Thermal-hydraulics system code development
 - TRACE/PARCS development for SFR simulation support
 - Merging PARCS into RELAP5.
- National Laboratory Collaboration (ANL)
 - Improving Convergence of GPASS
- International Collaboration(Tsinghua University)
 - Innovative Whole Core Transport
 - Hybrid Parallel Transport Simulation
- Improve Region-wise Cross Section Generation from Monte-Carlo whole Core Simulation

INTRODUCTIONS

- Name
- Where are you from?
- What are your favorite things to do?
- What are your research area(s) of interest?

Review of Additional Information

GRADUATE SCHOOL

www.purdue.edu/gradschool Young Hall, Room 170 765-494-2600

- Manage Transcripts
- Assist with Late Registration
- Process Grade Changes

REGISTRAR

www.purdue.edu/registrar
Stewart Center, Suite 176
765-494-8581

- Manage Transcripts
- Assist with Late Registration
- Process Grade Changes

BURSAR

www.purdue.edu/bursar Stewart Center, Room 194 765-494-7570

- Pay fees
 (http://mypurdue.purdue.edu)
- Applies Financial Aid to Student Accounts
- Administers Deferred Fee Billing Plans

Responsible Conduct of Research (RCR) Training

- Every graduate student in the School of Nuclear Engineering is required to complete the on-line Collaborative Institutional Training Initiative's (CITI) Responsible Conduct of Research (RCR) training program within 60 days of starting a graduate program and every five (5) years thereafter.
- Details on the CITI training can be found at: https://about.citiprogram.org/en/series/responsible -conduct-of-research-rcr/.
- Each graduate student must submit a certificate of completion for the CITI training to the Student Services Office by the last day of classes in their first semester in order to receive a grade of "Satisfactory" for the seminar course. The certificate of completion will be retained in the student's file.

Graduate Staff Employment

 Governed by Graduate Staff Employment Manual Updated: January 19, 2023

https://www.purdue.edu/gradschool/docum ents/gpo/graduate-student-employmentmanual.pdf

FERPA Certification

- Family Education Rights and Privacy Act
- If you are a grader and/or a TA at any point, you MUST be FERPA certified
- http://www.eventreg.purdue.edu/webcert
- Permission to Transmit Information Form www.purdue.edu/registrar
- 765-494-8219

ORAL ENGLISH PROFIENCY TEST (OEPT)

- Before being appointed to a teaching assistant position, a student must be certified by one of the accepted methods (Oral English Proficiency Test or performance in ENGL 62000)
- Students should work with Student Service Office (nuclss@purdue.edu) to register and prepare for the OEPT and, if necessary, enroll in ENGL 62000.
- ENGL 62000 is an English as a second language course in oral communication exclusively for non-native, English-speaking TA's.
- The OPET is a computer-based test used by the OEPP to screen prospective TAs for English language proficiency. While taking the test, candidates respond to a variety of questions, present information and speak extemporaneously on a range of topics. The responses are recorded and evaluated by at least two trained raters.
- A score of 50 or higher is required for certification.

OEPT: Certification Methods

Test	Minimum Scores Accepted for Oral English Certification
Oral English Proficiency Test	50
TOEFL iBT (speaking subscore)	27
IELTS (speaking band score)	8.0
PTE (speaking sub-score)	76
TOEFL (computer or paper based test)	Not Accepted for Oral English certification
Test of Written English	Not Accepted for Oral English certification
SPEAK (from other institutions)	Not Accepted for Oral English certification

REGISTERING for OEPT

If your major professor asks that you TA for a course or be a grader, and you are not automatically certified from your TOEFL or IELTS scores, please:

- Visit the OEPP website (<u>www.purdue.edu/oepp</u>)
- Find 2 exam time periods that work for you
- Email Student Service Office (nuclss@purdue.edu) with the exam dates
- Take the practice exam

REQUIREMENTS for the PROGRAM

Graduate Manual, Plan of Study and Registration

NE Graduate Manual

July 2023 Edition

- Contains supplementary regulations and procedures that are specific to the School of Nuclear Engineering.
- It is not intended to replace information, regulations, or procedures contained in the Graduate School's "Policies and Procedures Manual for Administering Graduate Student Programs" or other University or Graduate School publications.
- In the event of conflict, the Graduate School and/or University regulations shall prevail over School policies.

CHOOSING an ADVISOR (and Committee)

- A person who can guide your research
- Usually the person providing funding
- Often determined before you arrive if not, conduct a careful search
- Work with your advisor to choose your committee
- For additional information or questions Interim Grad Chair (Prof. Tsoukalas Email/ meet /appointment)
- If there is a certain faculty member you want to meet with, e-mail them to make appointment

PLAN of STUDY: Master's Students and PhD Students

Directions are in your supplied material for how to complete the Plan of Study

- Purdue University Graduate School www.purdue.edu/GradSchool
- NE Graduate Manual July 2023

https://engineering.purdue.edu/NE/for you/graduate/NE%20Graduate%20Ma nual%20Fall%202020

CORE CURRICULUM - Master's Students

Nuclear Engineering Graduate Manual

- 5 Core Courses (3 credits each): NUCL 501 (Intro), NUCL 504 (Radiation), NUCL 510 (Reactor Physics), NUCL 520 (Reactor Materials) and NUCL 551 (Thermal Hydraulics)
- 2 additional courses (3 credits each) of Math or Computer Science or other approved computational course
- Students who have not received a Bachelor of Science in Nuclear Engineering at Purdue MUST take NUCL 501
- Student who did not get an Undergraduate BSNE from Purdue MUST take NUCL 504
- Total 30 Credits hours are required
 - Thesis Based: 24 course credit hours (500 or 600 level) + 6 credit hours research
 - Course Based (non-thesis): 30 total course credit hours

CORE CURRICULUM - PhD Students

Nuclear Engineering Graduate Manual

- Core Courses: NUCL 501 (Intro), NUCL 504 (Radiation), NUCL 510 (Reactor Physics), NUCL 520 (Reactor Materials) and NUCL 551 (Thermal Hydraulics)
- 2 additional courses (3 credits each) of Math or Computer Science or other approved computational course
- Students who have not received a Bachelor of Science in Nuclear Engineering at Purdue MUST take NUCL 501
- Student who did not get an Undergraduate BSNE from Purdue MUST take NUCL 504
- 90 total credit hours are required to graduate
 - 48 credits hours of graduate coursework (500 and 600 level courses)
 - Minimum 3 courses 600 level
 - 42 credits hours of research

REGISTRATION FORM 23 (Schedule Revision Request)

- 1. PUID
- 2. Name
- 3. Term (Fall 2023)
- 4. College (College of Engineering or CoE)
- 5. Program (Nuclear Engineering or NE)
- 6. Classification (Graduate Student or GR)
- 7. Add (A); Drop (D); Modify (M)
- 8. CRN (Course Request Number / 5 digit number)
- 9. Subject (NUCL)
- 10. Course Number
- 11. Credits
- 12. Faculty Advisor Signature
- 13. Student Signature
- Complete Form 23 found in MyPurdue
- Submit the Form 23 to Nuclear Grad student service office: nuclss@purdue.edu
- Once you are registered, you will receive an email to review your registration

Fall 2023 REGISTRATION CALENDAR August 21, 2023 - First Day of Class

Calendar for course add or modify, and drop

https://www.purdue.edu/registrar/calendars/

TO ADD or MODIFY or CHANGE A GRADE MODE for a COURSE

TO ADD OF MODIL FOR CHANGE A GRADE MODE TO A COOKSE				
16 Weeks	1st 8 Weeks	2 nd 8 Weeks	AUTHORIZATIONS REQUIRED	
Aug 21 - Aug 25	Aug 21 - Aug 22	Oct 18 - Oct 19	(COURSE SPACE AVAILABILITY REQUIRED)	
Week 1			Students may add courses via Scheduling Assistant	
Aug 26 - Sep 18	Aug 23 - Sep 1	Oct 20 - Oct 31	Advisor and Instructor	
Week 2 - 4			Submit request via the Scheduling Assistant	
Sep 1	Aug 25	Oct 24	Last day to audit a course, submit change of grade mode to Audit after officially enrolled	
Sep 19 – Oct 24	Sep 2 – Sep 20	Nov 1 - Nov 17	Advisor, Instructor, and Head of Department in which the course is listed.	
Week 5 - 9	188		Submit via the Scheduling Assistant	

TO DROP A COURSE

16 Weeks	1 st 8 Weeks	2 nd 8 Weeks	AUTHORIZATIONS REQUIRED
Aug 21 – Sep 1	Aug 21 - Aug 25	Oct 18 - Oct 24	No authorizations required (Course not recorded)
Weeks 1 - 2	S 7 (1) (1) (1)		Students may drop courses via Scheduling Assistant.
Sep 2 – Sep 18	Aug 26 - Sep 1	Oct 25 - Oct 31	Advisor (Course recorded with a grade of "W")
Weeks 3 - 4			Submit request via Scheduling Assistant
Sep 19 - Oct 24	Sep 2 – Sep 20	Nov 1 - Nov 17	Advisor. Instructor (Instructor shall indicate whether passing or failing.) Grades of "W", "WF", or
Weeks 5 - 9	200.200		"WN" will be recorded. Students with a semester classification of 1 or 2 do not require response
			from instructor; grades will be "W". Submit via Scheduling Assistant.

Questions

Additional Presentations are available at

https://engineering.purdue.edu/NE/foryou /graduate

- Information and Library Search Skills
- > Ethics, Responsible Conduct of Research and iThenticate Program
- Academic Integrity
- Business office-Student Payroll
- > Student Organizations
 - Women in Engineering Programs (WIEP)
 - Women in Nuclear Engineering
 - Nuclear Engineering Graduate Organization
 - American Nuclear Society
 - Alpha Nu Sigma
 - Purdue Graduate Student Government (PGSG)

https://engineering.purdue.edu/NE/foryou/graduate

- College of Engineering Information
- Required: Graduate Student Responsible Conduct of Research (RCR) (PDF)
- Introduction to Funding (PDF)
- Apply for Fellowships & Scholarships (PDF)
- Mentoring: For Graduate School and Beyond (PDF)
- Engineering Academic Career Club (EACC) (Image)
- Graduate Mentoring Program from the Women in Engineering Program (Video)
- Presentation Slide Downloads
- New Graduate Student Orientation (PDF)
- Research Integrity Office (PDF)
- Academic Integrity & You: Graduate Edition (PDF)
- Orientation to the Purdue Libraries & School of Information Studies (PDF)
- ECN (Engineering Computer Network) (PDF)
- Videos: Research Integrity Office and NEGO

Additional information from College of Engineering

Website: www.engr.purdue.edu/grad

YouTube:

https://www.youtube.com/c/PurdueEngineeringGraduatePrograms

Twitter: @PurdueGradEngr

Counseling and Psychological Services (CAPS) Liaisons to CoE

https://engineering.purdue.edu/Engr/Bloom/CAPS-Liaisons-Engineering

- Graduate Student Center Lounge, kitchen, study rooms, multi-purpose room, and more!
- The Co-Rec
- 2 swimming pools and diving well
- Climbing & bouldering wall
- 2 indoor tracks, courts, martial arts, fitness classes, cooking classes
- Intramural & club sports

Task Human Resource for Wellness

Purdue College of Engineering Wellness

In addition to the rich Purdue
wellness programs already
available to you, Purdue College of
Engineering has partnered with
TaskHuman, a mobile app that
helps you achieve your personal
wellness goals!

New Changes to Health Insurance Benefits This Semester

- United Healthcare is the new benefits provider for graduate staff.
 - Graduate Staff Enrollment
 - Note: During this transition period for the first 12-months of coverage, UHCSR will pay out of network claims the same as in-network (if a claim processes out-of-network, then it will be reprocessed as in-network through the appeal process during this period).
 - If the out-of-network provider is identified before the claim processes, UHCSR will flag that provider to process as in-network and process the claim accordingly.
 - Here is a list of mental health providers
 - For questions or concerns about UHCSR, please contact <u>hr@purdue.edu</u>
- We also encourage you to use the <u>Engineering Graduate Student Anonymous</u>
 <u>Reporting Tool</u> so that the Office of Graduate Education can continue to support you!

Helpful Resources to Know About

- Did You Know? The Graduate School's brand-new one-stop location for a multitude of resources!
- Engineering Computer Network (ECN) –
 Knowledge Base
- Information Technology at Purdue (ITaP) –
 GoldAnswers
- International Students and Scholars (ISS)
- Oral English Proficiency Program (OEPP)

- Cultural Centers, Networks, & Resources
 - Graduate Student-Specific Organizations
- ACE Campus Food Pantry
- CityBus Website & App
- Purdue Recreation & Wellness (RecWell)
- Not sure where to turn with an issue? Reach out to The Graduate School Ombuds Services!

THANK YOU

